Paper 3 May/June 2010 MATHEMATICS (9709/32) A Levels
لطفا برای اطمینان از عملکرد و تجربه بهتر از مرورگرهای مدرن و به روز مانند کروم یا فایرفاکس استفاده کنید.

The complex number $z$ is given by
$z = \left( {\sqrt 3 } \right) + i$.
a) Find the modulus and argument of $z$.
b) The complex conjugate of $z$ is denoted by $z$. Showing your working, express in the form $x + iy$, where $x$ and $y$ are real,
(i) $2z + z$,
(ii) $\frac{{iz}}{z}$.
c) On a sketch of an Argand diagram with origin $O$, show the points $A$ and $B$ representing the complex…