گاما رو نصب کن!

{{ number }}
اعلان ها
اعلان جدیدی وجود ندارد!
کاربر جدید

جستجو

پربازدیدها: #{{ tag.title }}

جستجوهای پرتکرار

میتونی لایو بذاری!
  فرم معتبر نیست.
Mathematics (9709) 1401/11/25

Paper 1 October/November 2004 MATHEMATICH (9709/1) A Levels

CIE AS & A Level Mathematics (9709) بهمن 2004
شامل مباحث: Paper 1: Pure Mathematics 1
  تعداد سوالات: 10
  سطح دشواری: متوسط
  شروع: آزاد
  پایان: آزاد
  مدت پاسخگویی: 75 دقیقه

Paper 1 October/November 2004 MATHEMATICH (9709/1) A Levels
پیش نمایش صفحه اول فایل
نوع: Paper 1
ثبت شده در 25 بهمن 1401
  

In the diagram, $OAB$ is an isosceles triangle with $OA = OB$ and angle $AOB = 2\theta $ radians. Arc $PST$ has centre $O$ and radius $r$, and the line $ASB$ is a tangent to the arc $PST$ at $S$.

a) Find the total area of the shaded regions in terms of $r$ and $\theta $.

b) In the case where $\theta  = \frac{1}{3}\pi $ and $r = 6$, find the total perimeter of the shaded regions, leaving your answer in terms of $\surd 3$ and $\pi $.