گاما رو نصب کن!

{{ number }}
اعلان ها
اعلان جدیدی وجود ندارد!
کاربر جدید

جستجو

پربازدیدها: #{{ tag.title }}

جستجوهای پرتکرار

میتونی لایو بذاری!

The polynomial $\alpha {x^3} - 3{x^2} - 11x + b$, where $\alpha $ and $b$ are constants, is denoted by $p\left( x \right)$. It is given that $\left( {x + 2} \right)$ is a factor of $p\left( x \right)$, and that when $p\left( x \right)$ is divided by $\left( {x + 1} \right)$ the remainder is 12.

a) Find the values of $\alpha $ and $b$.

b) When $\alpha $ and $b$ have these values, factorise $p\left( x \right)$ completely.

پاسخ تشریحی :
نمایش پاسخ

a) Substitute $x =  - 2$, equate to zero and obtain a correct equation in any form

Substitute $x =  - 1$ and equate to 12

Obtain a correct equation in any form

Solve a relevant pair of equations for $\alpha $ or $b$

Obtain $\alpha  = 2$ and $b = 6$

b) Attempt division by $x + 2$ and reach a partial quotient of $2{x^2} - 7x$

Obtain quotient $2{x^2} - 7x + 3$

Obtain linear factors $2x - 1$ and $x - 3$

[Condone omission of repetition that $x + 2$ is a factor.]

[If linear factors $2x - 1$, $x - 3$ obtained by remainder theorem or inspection, award B2 + B1.]

S.C. M1A1√ if $\alpha $, $b$ not both correct

تحلیل ویدئویی تست

منتظریم اولین نفر تحلیلش کنه!