گاما رو نصب کن!

{{ number }}
اعلان ها
اعلان جدیدی وجود ندارد!
کاربر جدید

جستجو

پربازدیدها: #{{ tag.title }}

جستجوهای پرتکرار

میتونی لایو بذاری!

A small smooth pulley is fixed at the highest point $A$ of a cross-section $ABC$ of a triangular prism. Angle $ABC = {90^ \circ }$ and angle $BCA = {30^ \circ }$. The prism is fixed with the face containing $BC$ in contact with a horizontal surface. Particles $P$ and $Q$ are attached to opposite ends of a light inextensible string, which passes over the pulley. The particles are in equilibrium with $P$ hanging vertically below the pulley and $Q$ in contact with $AC$. The resultant force exerted on the pulley by the string is $3\surd 3{\text{ }}N$ (see diagram).

a) Show that the tension in the string is $3{\text{ }}N$.

The coefficient of friction between $Q$ and the prism is 0.75.

b) Given that $Q$ is in limiting equilibrium and on the point of moving upwards, find its mass.

پاسخ تشریحی :
نمایش پاسخ

a) [$2T\cos {30^ \circ } = 3\sqrt 3 $

or $T/\sin {30^ \circ } = 3\sqrt 3 /\sin {120^ \circ }$

or ${T^2} = {T^2} + {\left( {3\sqrt 3 } \right)^2} - 2T\left( {3\sqrt 3 } \right)\cos {30^ \circ }$

or $\surd \left\{ {{{\left( {T\cos {0^ \circ }} \right)}^2} + {{\left( {T + T\cos {{60}^ \circ }} \right)}^2}} \right\} = 3\sqrt 3 $]

Tension is $3N$

b) $\left[ {T = F + mg\sin 30} \right]$

$R = mg\cos 30$

$3 = 0.75\left( {10\cos {{30}^ \circ }} \right)m + 10m{\text{ }}\sin {30^ \circ }$

Mass is $0.261kg$

تحلیل ویدئویی تست

تحلیل ویدئویی برای این تست ثبت نشده است!