a) Calculate scalar product of direction of $l$ and normal to $p$
Obtain $4 \times 2 + 3 \times \left( { - 2} \right) + \left( { - 2} \right) \times 1 = 0$ and conclude accordingly
b) Substitute $\left( {\alpha ,{\text{ }}1,{\text{ }}4} \right)$ in equation of $p$ and solve for $\alpha $
Obtain $\alpha = 4$
c) Either
Attempt use of formula for perpendicular distance using $\left( {\alpha ,{\text{ }}1,{\text{ }}4} \right)$
Obtain at least $\frac{{2\alpha - 2 + 4 - 1}}{{\sqrt {4 + 4 + 1} }} = 6$
Obtain $\alpha = 13$
Attempt solution of $\frac{{2\alpha - 8}}{3} = - 6$
Obtain $\alpha = - 5$
Or
Form equation of parallel plane and substitute $\left( {\alpha ,{\text{ }}1,{\text{ }}4} \right)$
Obtain $\frac{{2\alpha + 2}}{3} - \frac{{10}}{3} = 6$
Obtain $\alpha = 13$
Solve $\frac{{2\alpha + 2}}{3} - \frac{{10}}{3} = - 6$
Obtain $\alpha = - 5$
Or
State a vector from a pt on the plane to $\left( {\alpha ,{\text{ }}1,{\text{ }}4} \right)$ e.g.
$\left( \begin{gathered}
\alpha - 5 \hfill \\
\,\,\,\,1 \hfill \\
\,\,\,\,4 \hfill \\
\end{gathered} \right)$ or $\left( \begin{gathered}
\alpha \hfill \\
1 \hfill \\
- 6 \hfill \\
\end{gathered} \right)$
Calculate the component of this vector in the direction of the unit
normal and equate to $6:\frac{1}{3}\left( \begin{gathered}
\alpha - 5 \hfill \\
1 \hfill \\
4 \hfill \\
\end{gathered} \right).\left( \begin{gathered}
2 \hfill \\
- 2 \hfill \\
1 \hfill \\
\end{gathered} \right) = 6$
Obtain $\alpha = 13$
Solve $\frac{1}{3}\left( \begin{gathered}
\alpha - 5 \hfill \\
1 \hfill \\
4 \hfill \\
\end{gathered} \right).\left( \begin{gathered}
2 \hfill \\
- 2 \hfill \\
1 \hfill \\
\end{gathered} \right) = - 6$
Obtain $\alpha = - 5$