گاما رو نصب کن!

{{ number }}
اعلان ها
اعلان جدیدی وجود ندارد!
کاربر جدید

جستجو

پربازدیدها: #{{ tag.title }}

جستجوهای پرتکرار

میتونی لایو بذاری!

Customers arrive at an enquiry desk at a constant average rate of 1 every 5 minutes.

a) State one condition for the number of customers arriving in a given period to be modelled by a Poisson distribution.

Assume now that a Poisson distribution is a suitable model.

b) Find the probability that exactly 5 customers will arrive during a randomly chosen 30-minute period.

c) Find the probability that fewer than 3 customers will arrive during a randomly chosen 12-minute period.

d) Find an estimate of the probability that fewer than 30 customers will arrive during a randomly chosen 2-hour period.

پاسخ تشریحی :
نمایش پاسخ

a) Customers arrive independently or randomly

b) ${e^{ - 6}} \times \frac{{{6^5}}}{{5!}}$

$ = 0.161$ ($3$ sfs)

c) $\lambda  = 2.4$

${e^{ - 2}}\left( {1 + 2.4 + \frac{{{{2.4}^2}}}{{2!}}} \right)$

$ = 0.570$ ($3$ sfs)

d) $N\left( {24,{\text{ }}24} \right)$

$\frac{{295 - 24}}{{\sqrt {24} }}\,\left( { = 1.123} \right)$

$\Phi {\text{ }}\left( {''1.123''} \right)$

$ = 0.869$ ($3$ sfs)

تحلیل ویدئویی تست

تحلیل ویدئویی برای این تست ثبت نشده است!