گاما رو نصب کن!

{{ number }}
اعلان ها
اعلان جدیدی وجود ندارد!
کاربر جدید

جستجو

پربازدیدها: #{{ tag.title }}

جستجوهای پرتکرار

میتونی لایو بذاری!

The diagram shows a circle with centre $O$ and radius $10{\text{ }}cm$. The chord $AB$ divides the circle into two regions whose areas are in the ratio 1 : 4 and it is required to find the length of $AB$. The angle $AOB$ is $\theta $ radians.

a) Show that $\theta  = \frac{2}{5}\pi  + \sin \theta $.

b) Showing all your working, use an iterative formula, based on the equation in part (a), with an initial value of 2.1, to find $\theta $ correct to 2 decimal places. Hence find the length of $AB$ in centimetres correct to 1 decimal place.

پاسخ تشریحی :
نمایش پاسخ

a) State or imply area of segment is $\frac{1}{2}{r^2}\theta  - \frac{1}{2}{r^2}\sin \theta $ or $50\theta  - 50{\text{ }}\sin \theta $

Attempt to form equation from area of segment $ = \frac{1}{5}$ of area of circle, or equivalent

Confirm given result $\theta  = \frac{2}{5}\pi  + \sin \theta $

b) Use iterative formula correctly at least once

Obtain value for $\theta $ of $2.11$

Show sufficient iterations to justify value of $\theta $ or show sign change in interval $\left( {2.105,{\text{ }}2.115} \right)$

Use correct trigonometry to find an expression for the length of $AB$

e.g. $20\sin {\text{ }}1.055$ or $\sqrt {200 - 200\cos 2.11} $

Hence $17.4$

$\left[ {2.1 \to 2.1198 \to 2.1097 \to 2.1149 \to 2.1122} \right]$

تحلیل ویدئویی تست

تحلیل ویدئویی برای این تست ثبت نشده است!