a) $P\left( F \right) = \frac{{12}}{{30}}\left( {0.4} \right)$
or $P\left( W \right) = \frac{{16}}{{30}}\left( {0.533} \right)$
or $P\left( {M \cap W'} \right) = \frac{5}{{30}}\left( {0.167} \right)$
($F$ or $W$) $ = \frac{{13}}{{30}} + \frac{3}{{30}} + \frac{9}{{30}}$
or $1 - \frac{5}{{30}}$ or $\frac{{12}}{{30}} + \frac{{16}}{{30}} - \frac{3}{{30}}$
$ = \frac{5}{6}\left( {0.833} \right)$
b) $P\left( M \right) = 18/30{\text{ }}\left( {0.6} \right)$,
$P\left( W \right) = 16/30{\text{ }}\left( {0.533} \right)$,
$P\left( M \right) \times P\left( W \right) = 8/25{\text{ }}\left( {0.32} \right)$
$P$($M$ and $W$) $ = 13/30{\text{ }}\left( {0.433} \right)$
$ \ne 8/25{\text{ }}\left( {0.32} \right)$
not independent
OR
$P\left( {M|W} \right) = \frac{{P\left( {M\,and\,W} \right)}}{{P\left( W \right)}} = \frac{{{\raise0.5ex\hbox{$\scriptstyle {13}$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle {30}$}}}}{{{\raise0.5ex\hbox{$\scriptstyle {16}$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle {30}$}}}} = \frac{{13}}{{16}}\,\,\left( {0.813} \right)$
$ \ne \frac{{18}}{{30}} = P\left( M \right)$,
not independent