گاما رو نصب کن!

{{ number }}
اعلان ها
اعلان جدیدی وجود ندارد!
کاربر جدید

جستجو

پربازدیدها: #{{ tag.title }}

جستجوهای پرتکرار

میتونی لایو بذاری!

A smooth bead $B$ of mass $0.3{\text{ }}kg$ is threaded on a light inextensible string of length $0.9{\text{ }}m$. One end of the string is attached to a fixed point $A$, and the other end of the string is attached to a fixed point $C$ which is vertically below $A$. The tension in the string is $T{\text{ }}N$, and the bead rotates with angular speed $\omega {\text{ }}rad{\text{ }}{s^{ - 1}}$ in a horizontal circle about the vertical axis through $A$ and $C$.

a) Given that $B$ moves in a circle with centre $C$ and radius $0.2{\text{ }}m$, calculate $\omega $, and hence find the kinetic energy of $B$.

b) Given instead that angle $ABC = {90^ \circ }$, and that $AB$ makes an angle ${\tan ^{ - 1}}\left( {\frac{1}{2}} \right)$  with the vertical, calculate $T$ and $\omega $.

پاسخ تشریحی :
نمایش پاسخ

a) $\theta  = {\sin ^{ - 1}}\left( {0.2/0.7} \right) = {16.6^ \circ }$ with the vertical

$T\cos \theta  = 0.3g$

$T + T\sin \theta  = 0.3{\omega ^2} \times 0.2$

$\omega  = 8.19$

$KE\left( { = 0.3 \times {{\left( {8.19 \times 0.2} \right)}^2}/2} \right) = 0.402{\text{ }}J$

b) $\left( {0.9 - AB} \right)/AB = {\raise0.5ex\hbox{$\scriptstyle 1$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}}$

$AB = 0.6{\text{ }}m$

$T\cos \alpha  - T\sin \alpha  = 0.3g$

$T = 6.71$

$T\cos \alpha  + T\sin \alpha  = 0.3{\omega ^2} \times 0.6\sin \alpha $

$\omega  = 10.6$

تحلیل ویدئویی تست

تحلیل ویدئویی برای این تست ثبت نشده است!