Mathematics 7th grade با پاسخ UNIT 13: Graphs 13.3 Other straight lines
-
Mathematics 7
- UNIT 1: Integers
- UNIT 2: Sequences‚ expressions and formulae
- UNIT 3: Place value‚ ordering and rounding
- UNIT 4: Length‚ mass and capacity
- UNIT 5: Angles
- UNIT 6: Planning and collecting data
- UNIT 7: Fractions
- UNIT 8: Symmetry
- UNIT 9: Expressions and equations
- UNIT 10: Averages
- UNIT 11: Percentages
- UNIT 12: Constructions
- UNIT 13: Graphs
- UNIT 14: Ratio and proportion
- UNIT 15: Time
- UNIT 16: Probability
- UNIT 17: Position and movement
- UNIT 18: Area‚ perimeter and volume
- UNIT 19: Interpreting and discussing the results
You can use an equation to find pairs of values of x and y that obey the rule.
Look at the equation $y = x + 2$.
Choose any value for x and then work out the corresponding values of y. Each time you will get the coordinates of a point.
• If $x=4$ $ \to $ then $y = 4 + 2 = 6$ $ \to $ This gives the coordinates $(4,6)$.
• If $x=1$ $ \to $ then $y = 1 + 2 = 3$ $ \to $ This gives the coordinates $(1, 3)$.
• If $x=-3$ $ \to $ then $y=-3 + 2 = -1$ $ \to $ This gives the coordinates $(-3,-1)$.
• If $x=0$ $ \to $ then $y = 0 + 2 = 2$ $ \to $ This gives the coordinates $(0,2)$.
If you plot these points, you can draw a straight line through them.
Any other points you find, using this equation, will be on the same line, $y = x + 2$.
Worked example 13.3
a: Complete this table of values for $y = 5 - 3x$.
b: Use your table to draw the graph of $y = 5 - 3x$.
3 | 2 | 0 | 1- | 2- | x |
1- | 2- | 8 | y |
3 | 2 | 0 | 1- | 2- | x |
4- | 1- | 5 | 8 | 11 | y |
If $x = - 2$ then $y = 5 - 3 \times - 2 = 11$
If $x = 0$ then $y = 5 - 3 \times 0 = 5$
If $x = 3$ then $y = 5 - 3 \times 3 = - 4$
b:
Think carefully about the numbers you put on the axes.
The x-axis must include -2 and 3. The y-axis must include -4 and 11.
Make sure you can plot all five points.
The points are in a straight line. Draw a line through all the points.
Make the line as long as the grid allows.
Exercise 13.3
1) a: Copy and complete this table of values for $y = x + 4$.
4 | 2 | 0 | 3- | 5- | x |
6 | 1 | y |
b: Copy these axes. Use your table to draw the graph of $y = x + 4$.
2) a: Copy and complete this table of values for $y= 2x + 5$.
3 | 2 | 0 | 2- | 4- | x |
11 | 1 | y |
b: Copy these axes. Use your table to draw the graph of $y= 2x + 5$.
3) a: Complete this table of values for $y= x - 3$.
6 | 4 | 2 | 1- | 2- | x |
5- | y |
b: Use your table to draw the graph of $y = x - 3$.
c: Where does the graph cross the x-axis?
4) a: Complete this table of values for $y = 5 - x$.
6 | 5 | 2 | 1- | 3- | x |
0 | 6 | y |
b: Use your table to draw the graph of $y= 5 - x$.
c: Where does the graph cross the x-axis?
5) a: Complete this table of values for $y = 2 - x$.
5 | 3 | 2 | 0 | 2- | 4- | x |
5- | y |
b: Draw the graph of $y = 2 - x$.
6) a: Complete this table of values for $y= 2(x + 1)$.
5 | 2 | 0 | 2- | 4- | x |
6- | y |
b: Draw the graph of $y=2(x+1)$.
7) a: Complete this table of values for $y= 3-2x$.
4 | 2 | 1 | 0 | 1- | 2- | x |
1- | 7 | y |
b: Draw the graph of $y=3-2x$.
8) a: Complete this table of values for $y=2x-4$.
5 | 3- | x | |||
6 | y |
Choose your own values of x between -3 and 5.
b: Draw the graph of $y= 2x-4$.
c: Where does the graph cross each of the axes?
9) a: Draw the graph of $y=6-x$ with values of x from -2 to 7.
b: On the same axes draw the graph of $y= 2$.
c: Where do the two lines cross?