گاما رو نصب کن!

{{ number }}
اعلان ها
اعلان جدیدی وجود ندارد!
کاربر جدید

جستجو

پربازدیدها: #{{ tag.title }}

جستجوهای پرتکرار

میتونی لایو بذاری!

a) By sketching a suitable pair of graphs, show that the equation

$\sec x = 3 - \frac{1}{2}{x^2}$,

where $x$ is in radians, has a root in the interval $0 \lt x \lt \frac{1}{2}\pi $.

b) Verify by calculation that this root lies between 1 and 1.4.

c) Show that this root also satisfies the equation

$x = {\cos ^{ - 1}}\left( {\frac{2}{{6 - {x^2}}}} \right)$.

d) Use an iterative formula based on the equation in part (c) to determine the root correct to 2 decimal places. Give the result of each iteration to 4 decimal places.

پاسخ تشریحی :
نمایش پاسخ

a) Make recognisable sketch of a relevant graph over the given interval

Sketch the other relevant graph and justify the given statement

b) Consider the sign of $\sec x - (3 - \frac{1}{2}{x^2})$ at $x = 1$ and $x = 1.4$, or equivalent

Complete the argument with correct calculated values

c) Convert the given equation to $\sec x = 3 - \frac{1}{2}{x^2}$ or work $vice{\text{ }}vers\alpha $

d) Use a correct iterative formula correctly at least once

Obtain final answer 1.13

Show sufficient iterations to 4 d.p. to justify 1.13 to 2 d.p., or show there is a sign change in the interval (1.125, 1.135)

تحلیل ویدئویی تست

تحلیل ویدئویی برای این تست ثبت نشده است!