گاما رو نصب کن!

{{ number }}
اعلان ها
اعلان جدیدی وجود ندارد!
کاربر جدید

جستجو

پربازدیدها: #{{ tag.title }}

جستجوهای پرتکرار

میتونی لایو بذاری!

The number of birds of a certain species in a forested region is recorded over several years. At time $t$ years, the number of birds is $N$, where $N$ is treated as a continuous variable. The variation in the number of birds is modelled by

$\frac{{dN}}{{dt}} = \frac{{N\left( {1800 - N} \right)}}{{3600}}$.

It is given that $N = 300$ when $t = 0$.

a) Find an expression for $N$ in terms of $t$.

b) According to the model, how many birds will there be after a long time?

پاسخ تشریحی :
نمایش پاسخ

a) Separate variables correctly and integrate of at least one side

Carry out an attempt to find $A$ and $B$ such that $\frac{1}{{N\left( {1800 - N} \right)}} \equiv \frac{A}{N} + \frac{B}{{1800 - N}}$, or equivalent

Obtain $\frac{2}{N} + \frac{2}{{1800 - N}}$ or equivalent

Integrates to produce two terms involving natural logarithms

Obtain $2{\text{ }}ln{\text{ }}N - 2{\text{ }}ln{\text{ }}\left( {1800 - N} \right) = t$ or equivalent

Evaluate a constant, or use $N = 300$ and $t = 0$ in a solution involving $\alpha {\text{ }}ln{\text{ }}N$, $b{\text{ }}ln\left( {1800} \right)$ and $ct$

Obtain $2{\text{ }}ln{\text{ }}N - 2{\text{ }}ln{\text{ }}\left( {1800 - N} \right) = t - 2{\text{ }}ln{\text{ }}5$ or equivalent

Use laws of logarithms to remove logarithms

Obtain $N = \frac{{1800{e^{\frac{1}{2}t}}}}{{5 + {e^{\frac{1}{2}t}}}}$ or equivalent

b) State or imply that $N$ approaches $1800$

تحلیل ویدئویی تست

تحلیل ویدئویی برای این تست ثبت نشده است!