گاما رو نصب کن!

{{ number }}
اعلان ها
اعلان جدیدی وجود ندارد!
کاربر جدید

جستجو

پربازدیدها: #{{ tag.title }}

جستجوهای پرتکرار

میتونی لایو بذاری!

The curve with equation $y = \frac{6}{{{x^2}}}$ intersects the line $y = x + 1$ at the point $P$.

a) Verify by calculation that the x-coordinate of $P$ lies between 1.4 and 1.6.

b) Show that the x-coordinate of $P$ satisfies the equation

$x = \sqrt {\left( {\frac{6}{{x + 1}}} \right)} $.

c) Use the iterative formula

${x_{n + 1}} = \sqrt {\left( {\frac{6}{{{x_n} + 1}}} \right)} $,

with initial value ${x_1} = 1.5$, to determine the x-coordinate of $P$ correct to 2 decimal places. Give the result of each iteration to 4 decimal places.

پاسخ تشریحی :
نمایش پاسخ

a) Consider sign of $\frac{6}{{{x^2}}} - x - 1$ at $x = 1.4$ and $x = 1.6$, or equivalent

Complete the argument correctly with appropriate calculations

b) State $\frac{6}{{{x^2}}} = x + 1$

Rearrange equation to given equation or $vice{\text{ }}vers\alpha $

c) Use the iterative formula correctly at least once

Obtain final answer 1.54

Show sufficient iterations to justify its accuracy to 2 d.p. or show there is a sign change in the interval $\left( {1.535,{\text{ }}1.545} \right)$

تحلیل ویدئویی تست

تحلیل ویدئویی برای این تست ثبت نشده است!