گاما رو نصب کن!

{{ number }}
اعلان ها
اعلان جدیدی وجود ندارد!
کاربر جدید

جستجو

پربازدیدها: #{{ tag.title }}

جستجوهای پرتکرار

میتونی لایو بذاری!

The diagram shows the velocity-time graphs for the motion of two particles $P$ and $Q$, which travel in the same direction along a straight line. $P$ and $Q$ both start at the same point $X$ on the line, but $Q$ starts to move $T{\text{ }}s$ later than $P$. Each particle moves with speed $2.5{\text{ }}m{\text{ }}{s^{ - 1}}$ motion. The speed of each particle changes instantaneously to $4{\text{ }}m{\text{ }}{s^{ - 1}}$ after it has been moving for $20{\text{ }}s$ and the particle continues at this speed.

a) Make a rough copy of the diagram and shade the region whose area represents the displacement of $P$ from $X$ at the instant when $Q$ starts.

It is given that $P$ has travelled $70{\text{ }}m$ at the instant when $Q$ starts.

b) Find the value of $T$.

c) Find the distance between $P$ and $Q$ when $Q’s$ speed reaches $4{\text{ }}m{\text{ }}{s^{ - 1}}$.

d) Sketch a single diagram showing the displacement-time graphs for both $P$ and $Q$, with values shown on the t-axis at which the speed of either particle changes.

پاسخ تشریحی :
نمایش پاسخ

a) For correct shading composite figure

consisting of 2 rectangles: ${1^{st}}$ has

boundaries $t = 0$ & $t = 20$, $v = 0$ and

$v = 2.5;{\text{ }}{2^{nd}}$ has boundaries $t = 20$ & $t = T$,

$v = 0$ and $v = 4$

b) [$50 + 4\left( {T - 20} \right) = 70$ or $4T - 30 = 70$]

$T = 25$

c) [Distance $ = 70 + \left( {4 - 2.5} \right)20$ or

$50{\text{ }} + {\text{ }}4$ [$\left( {T - 20} \right) + 20$] $ - 5$]

Distance between $P$ and $Q$ is $100{\text{ }}m$

d) For 2 straight line segments

representing $P$, ${1^{st}}$ with $ + ve$ slope and ${2^{nd}}$ with steeper slope, $t = 20$ indicated appropriately

For $Q$, ${1^{st}}$ & ${2^{nd}}$ segments parallel to P’s

and displaced to the right, $t = 25$ and $t = 45$ indicated appropriately

تحلیل ویدئویی تست

تحلیل ویدئویی برای این تست ثبت نشده است!