گاما رو نصب کن!

{{ number }}
اعلان ها
اعلان جدیدی وجود ندارد!
کاربر جدید

جستجو

پربازدیدها: #{{ tag.title }}

جستجوهای پرتکرار

میتونی لایو بذاری!

$ABC$ is a uniform triangular lamina of weight $19{\text{ N}}$, with $AB = 0.22{\text{ }}m$ and $AC = BC = 0.61{\text{ }}m$.

The plane of the lamina is vertical. $A$ rests on a rough horizontal surface, and $AB$ is vertical. The equilibrium of the lamina is maintained by a light elastic string of natural length $0.7{\text{ }}m$ which passes over a small smooth peg $P$ and is attached to $B$ and $C$. The portion of the string attached to $B$ is horizontal, and the portion of the string attached to $C$ is vertical (see diagram).

a) Show that the tension in the string is $10{\text{ }}N$.

b) Calculate the modulus of elasticity of the string. 

c) Find the magnitude and direction of the force exerted by the surface on the lamina at $A$.

پاسخ تشریحی :
نمایش پاسخ

a) $19 \times 0.6/3 + T \times 0.22 = T \times 0.6$

$T = 10$

b) $10 = \lambda \left( {0.11 + 0.6 - 0.7} \right)/0.7$

$\lambda  = 700$

c) ${F^2} = {10^2} + {\left( {19 - 10} \right)^2}$

$F = 13.5$

$\alpha  = {\tan ^{ - 1}}\left( {9/10} \right) = 42.{\left( 0 \right)^ \circ }$ (with horizontal)

تحلیل ویدئویی تست

تحلیل ویدئویی برای این تست ثبت نشده است!