گاما رو نصب کن!

{{ number }}
اعلان ها
اعلان جدیدی وجود ندارد!
کاربر جدید

جستجو

پربازدیدها: #{{ tag.title }}

جستجوهای پرتکرار

میتونی لایو بذاری!

Particles $P$ and $Q$ are attached to opposite ends of a light inextensible string which passes over a fixed smooth pulley. The system is released from rest with the string taut, with its straight parts vertical, and with both particles at a height of $2{\text{ }}m$ above horizontal ground. $P$ moves vertically downwards and does not rebound when it hits the ground. At the instant that $P$ hits the ground, $Q$ is at the point $X$, from where it continues to move vertically upwards without reaching the pulley. Given that $P$ has mass $0.9{\text{ }}kg$ and that the tension in the string is $7.2{\text{ }}N$ while $P$ is moving, find the total distance travelled by $Q$ from the instant it first reaches $X$ until it returns to $X$.

پاسخ تشریحی :
نمایش پاسخ

$0.9g - 7.2 = 0.9a$   $\left( {a = 2} \right)$

$\left[ {{v^2} = 2 \times \left( {0.9g - 7.2} \right)/0.9 \times 2} \right]$   $\left( {v = \sqrt 8 } \right)$

${u_{slack}} = {v_{taut}} = 2\sqrt {g - 8} $

$\left[ {distance = 4 - 32/g} \right]$

Distance is $0.8{\text{ }}m$

تحلیل ویدئویی تست

تحلیل ویدئویی برای این تست ثبت نشده است!