گاما رو نصب کن!

{{ number }}
اعلان ها
اعلان جدیدی وجود ندارد!
کاربر جدید

جستجو

پربازدیدها: #{{ tag.title }}

جستجوهای پرتکرار

میتونی لایو بذاری!

a) Verify by calculation that the cubic equation

${x^3} - 2{x^2} + 5x - 3 = 0$

has a root that lies between $x = 0.7$ and $x = 0.8$.

b) Show that this root also satisfies an equation of the form

$x = \frac{{\alpha {x^2} + 3}}{{{x^2} + b}}$,

where the values of $\alpha $ and $b$ are to be found.

c) With these values of $\alpha $ and $b$, use the iterative formula

${x_{n + 1}} = \frac{{\alpha x_n^2 + 3}}{{x_n^2 + b}}$

to determine the root correct to 2 decimal places. Give the result of each iteration to 4 decimal places.

پاسخ تشریحی :
نمایش پاسخ

a) Consider sign of ${x^3} - 2{x^2} + 5x - 3$ at $x = 0.7$ and $x = 0.8$

Complete the argument correctly with appropriate calculations

b) Rearrange equation to given equation or $vice{\text{ }}vers\alpha $

State $\alpha  = 2$ and $b = 5$

c) Use the iterative formula correctly at least once

Obtain final answer 0.74

Show sufficient iterations to justify its accuracy to 2 d.p. or show there is a sign change in the interval (0.735, 0.745)

تحلیل ویدئویی تست

تحلیل ویدئویی برای این تست ثبت نشده است!