a) Verify by calculation that the cubic equation
${x^3} - 2{x^2} + 5x - 3 = 0$
has a root that lies between $x = 0.7$ and $x = 0.8$.
b) Show that this root also satisfies an equation of the form
$x = \frac{{\alpha {x^2} + 3}}{{{x^2} + b}}$,
where the values of $\alpha $ and $b$ are to be found.
c) With these values of $\alpha $ and $b$, use the iterative formula
${x_{n + 1}} = \frac{{\alpha x_n^2 + 3}}{{x_n^2 + b}}$
to determine the root correct to 2 decimal places. Give the result of each iteration to 4 decimal places.
پاسخ تشریحی :
تحلیل ویدئویی تست
تحلیل ویدئویی برای این تست ثبت نشده است!