گاما رو نصب کن!

{{ number }}
اعلان ها
اعلان جدیدی وجود ندارد!
کاربر جدید

جستجو

پربازدیدها: #{{ tag.title }}

جستجوهای پرتکرار

میتونی لایو بذاری!

The diagram shows the curve $y = \left( {x - 4} \right){e^{\frac{1}{2}x}}$. The curve has a gradient of 3 at the point $P$.

a) Show that the x-coordinate of $P$ satisfies the equation

$x = 2 + 6{e^{ - \frac{1}{2}x}}$.

b) Verify that the equation in part (a) has a root between $x = 3.1$ and $x = 3.3$.

c) Use the iterative formula ${x_{n + 1}} = 2 + 6{e^{ - \frac{1}{2}{x_n}}}$ to determine this root correct to 2 decimal places. Give the result of each iteration to 4 decimal places.

پاسخ تشریحی :
نمایش پاسخ

a) At any stage, state the correct derivative of ${e^{\frac{1}{2}x}}$

Use product rule

Obtain correct derivative in any form

Equate derivative to 3 and obtain given equation correctly

b) Consider sign of $2 + 6{e^{ - \frac{1}{2}x}} - x$, or equivalent

Complete the argument correctly with appropriate calculations

c) Use the iterative formula correctly at least once

Obtain final answer 3.21

Show sufficient iterations to justify its accuracy to 2 d.p. or show there is a sign change in the interval (3.205, 3.215)

تحلیل ویدئویی تست

تحلیل ویدئویی برای این تست ثبت نشده است!