$6\cos {\alpha ^ \circ } + 5\cos \left( {{{90}^ \circ } - {\alpha ^ \circ }} \right) = F$ and
$6\sin {\alpha ^ \circ } - 5\cos \left( {{{90}^ \circ } - {\alpha ^ \circ }} \right) = F$
$[6\cos {\alpha ^ \circ } + 5\sin {\alpha ^ \circ } = 6\sin {\alpha ^ \circ } - 5\cos {\alpha ^ \circ }$
$ \to 11\cos {\alpha ^ \circ } = \sin {\alpha ^ \circ }]{\text{ }}$
$\alpha = 84.8$
$[F = 6\cos {84.8^ \circ } + 5\sin {84.8^ \circ }{\text{ }};{\text{ }}F = 6\sin {84.8^ \circ } - $
$5\cos {84.8^ \circ }]$
$F = 5.52$
First alternative scheme
$\left[ {2{F^2} = 25 + 36} \right]$
$F = 5.52$
$\tan \left( {{\alpha ^ \circ } - {{45}^ \circ }} \right) = 5/6$ or $\tan \left( {{{135}^ \circ } - {\alpha ^ \circ }} \right) = 6/5$ or
$\cos \left( {{\alpha ^ \circ } - {{45}^ \circ }} \right)$ or $\sin \left( {{{135}^ \circ } - {\alpha ^ \circ }} \right) = 6/\sqrt {61} $ or
$\sin \left( {{\alpha ^ \circ } - {{45}^ \circ }} \right)$ or $\cos \left( {{{135}^ \circ } - {\alpha ^ \circ }} \right) = 5/\sqrt {61} $
$\alpha = 84.8$
Second alternative scheme
$[6\cos {\alpha ^ \circ } + 5\cos \left( {{{90}^ \circ } - {\alpha ^ \circ }} \right)$
$ = 6\sin {\alpha ^ \circ } - 5\sin \left( {{{90}^ \circ } - {\alpha ^ \circ }} \right)]$
$\left[ {11\cos {\alpha ^ \circ } - \sin {\alpha ^ \circ } = 0} \right]$
$\alpha = 84.8$
For $F = 6\cos {\alpha ^ \circ } + 5\cos \left( {{{90}^ \circ } - {\alpha ^ \circ }} \right)$ or
$F = 6\sin {\alpha ^ \circ } - 5\sin \left( {{{90}^ \circ } - {\alpha ^ \circ }} \right)$
$F = 5.52$