گاما رو نصب کن!

{{ number }}
اعلان ها
اعلان جدیدی وجود ندارد!
کاربر جدید

جستجو

پربازدیدها: #{{ tag.title }}

جستجوهای پرتکرار

میتونی لایو بذاری!

The weights of letters posted by a certain business are normally distributed with mean $20{\text{ }}g$. It is found that the weights of 94% of the letters are within $12{\text{ }}g$ of the mean.

a) Find the standard deviation of the weights of the letters.

b) Find the probability that a randomly chosen letter weighs more than $13{\text{ }}g$.

c) Find the probability that at least 2 of a random sample of 7 letters have weights which are more than $12{\text{ }}g$ above the mean.

پاسخ تشریحی :
نمایش پاسخ

a) $z = 1.882$ or $1.881$

$1.882 = \left( {32 - 20} \right)/\sigma $

$\sigma  = 6.38$

b) $P\left( {x \gt 13} \right) = P\left( {z \gt \frac{{13 - 20}}{{6.376}}} \right)$

$ = P\left( {z \gt  - 1.0978} \right)$

$ = 0.864$

c) $P$(at least 2) $ = 1 - P\left( {0,{\text{ }}1} \right)$

$ = 1 - {\left( {0.97} \right)^7} - \left( {0.03} \right){\left( {0.97} \right)^6}{}_7{C_1}$

$ = 0.0171$

تحلیل ویدئویی تست

تحلیل ویدئویی برای این تست ثبت نشده است!