a) State or imply $dx = 2t{\text{ }}dt$ or equivalent
Express the integral in terms of $x$ and $dx$
Obtain given answer $\int\limits_1^5 {\left( {2x - 2} \right)ln{\text{ }}x{\text{ }}dx} $, including change of limits
b) Attempt integration by parts obtaining $\left( {\alpha {x^2} + bx} \right)ln{\text{ }}x \pm \int {\left( {\alpha {x^2} + bx} \right)\frac{1}{x}dx} $ or equivalent
Obtain $\left( {{x^2} - 2x} \right)ln{\text{ }}x - \int {\left( {{x^2} - 2x} \right)\frac{1}{x}dx} {\text{ }}$ or equivalent
Obtain $\left( {{x^2} - 2x} \right)ln{\text{ }}x - \frac{1}{2}{x^2} + 2x$
Use limits correctly having integrated twice
Obtain $15{\text{ }}ln{\text{ }}5 - 4$ or exact equivalent
[Equivalent for M1 is $\left( {2x - 2} \right)\left( {\alpha x{\text{ }}ln{\text{ }}x + bx} \right) - \int {\left( {\alpha x{\text{ }}ln{\text{ }}x + bx} \right)2dx} $]