a) ${a_P} = g\sin {30^ \circ }$
$3.2 = {\raise0.5ex\hbox{$\scriptstyle 1$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}}{\text{gt}}_q^2$
$\left[ {6.4 = u\left( {0.8} \right) + {\raise0.5ex\hbox{$\scriptstyle 1$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}}5 \times {{\left( {0.8} \right)}^2}} \right]$
$u = 6$
b) [$v = 6 + 5 \times 0.8$ or ${v^2} = 36 + 2 \times 5 \times 6.4$]
Speed of $P$ is $10{\text{ }}m{s^{ - 1}}$
Alternative for Parts (a) and (b) when a is not used:
Part (a)
$3.2 = {\raise0.5ex\hbox{$\scriptstyle 1$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}}{\text{gt}}_q^2$
For using $KE$ gain $ = PE{\text{ }}$ loss to obtain an equation in $u$ and $v$
$\left[ {{\raise0.5ex\hbox{$\scriptstyle 1$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}}\left( {{v^2} - {u^2}} \right) = 6.4g\sin {{30}^ \circ }} \right]$
For using $s = {\raise0.5ex\hbox{$\scriptstyle 1$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}}\left( {u + v} \right)t$ to obtain a second equation in $u$ and $v$
$\left[ {6.4 = {\raise0.5ex\hbox{$\scriptstyle 1$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}}\left( {u + v} \right) \times 0.8} \right]$
$u = 6$
Part (b)
Substitutes for $u$ to find $v$
Speed is $10{\text{ }}m{s^{ - 1}}$