گاما رو نصب کن!

{{ number }}
اعلان ها
اعلان جدیدی وجود ندارد!
کاربر جدید

جستجو

پربازدیدها: #{{ tag.title }}

جستجوهای پرتکرار

میتونی لایو بذاری!

a) The equation $2{x^3} - {x^2} + 2x + 12 = 0$ has one real root and two complex roots. Showing your working, verify that $1 + i{\text{ }}\surd 3$ is one of the complex roots. State the other complex root.

b) On a sketch of an Argand diagram, show the point representing the complex number $1 + i{\text{ }}\surd 3$

On the same diagram, shade the region whose points represent the complex numbers $z$ which atisfy both the inequalities $\left| {z - 1 - i{\text{ }}\surd 3} \right| \leqslant 1$ and arg $z \leqslant \frac{1}{3}\pi $.

پاسخ تشریحی :
نمایش پاسخ

a) EITHER: Substitute $1 + i\sqrt 3 $, attempt complete expansions of the ${x^3}$ and ${x^2}$ terms

Use ${i^2} =  - 1$ correctly at least once

Complete the verification correctly

State that the other root is $1 - i\sqrt 3 $

OR1: State that the other root is $1 - i\sqrt 3 $

State quadratic factor ${x^2} - 2x + 4$

Divide cubic by 3-term quadratic reaching partial quotient $2x + k$

Complete the division obtaining zero remainder

OR2: State factorisation $\left( {2x + 3} \right)\left( {{x^2} - 2x + 4} \right)$, or equivalent

Make reasonable solution attempt at a 3-term quadratic and use ${i^2} =  - 1$

Obtain the root $1 + i\sqrt 3 {\text{ }}$

State that the other root is $1 - i\sqrt 3 {\text{ }}$

b) Show point representing $1 + i\sqrt 3 $ in relatively correct position on an Argand diagram

Show circle with centre at $1 + i\sqrt 3 $ and radius 1

Show line for arg $z = \frac{1}{3}\pi $ making $\frac{1}{3}\pi $ with the real axis

Show line from origin passing through centre of circle, or the diameter which would contain the origin if produced

Shade the relevant region

تحلیل ویدئویی تست

تحلیل ویدئویی برای این تست ثبت نشده است!