گاما رو نصب کن!

{{ number }}
اعلان ها
اعلان جدیدی وجود ندارد!
کاربر جدید

جستجو

پربازدیدها: #{{ tag.title }}

جستجوهای پرتکرار

میتونی لایو بذاری!

$O$ and $A$ are fixed points on a horizontal surface, with $OA = 0.5{\text{ }}m$. A particle $P$ of mass $0.2{\text{ }}kg$ is projected horizontally with speed $3{\text{ }}m{\text{ }}{s^{ - 1}}$ from $A$ in the direction $OA$ and moves in a straight line (see diagram). At time $t\,s$ after projection, the velocity of $P$ is $vm{\text{ }}{s^{ - 1}}$ and its displacement from $O$ is $x{\text{ m}}$.

The coefficient of friction between the surface and $P$ is $0.5$, and a force of magnitude $\frac{{0.4}}{{{x^2}}}N$ acts on $P$ in the direction $PO$.

a) Show that, while the particle is in motion, $v\frac{{dv}}{{dx}} =  - \left( {5 + \frac{2}{{{x^2}}}} \right)$.

b) Calculate the distance travelled by $P$ before it comes to rest, and show that $P$ does not subsequently move.

پاسخ تشریحی :
نمایش پاسخ

a) $0.2a =  - 0.2g0.5 - 0.4/{x^2}$

$vdv/dx =  - \left( {5 + 2{x^{ - 2}}} \right)$

b) $\int {vdv}  =  - \int {\left( {5 + 2{x^{ - 2}}} \right)dx} $

${v^2}/2 =  - 5x + 2/x{\text{ }}\left( { + c} \right)$

${3^2}/2 =  - 5 \times 0.5 + 2/0.5 + c$

$x = 1$

Travels $\left( { = 1 - 0.5} \right) = 0.5m$

F towards O $\left( {0.4} \right)$ less than maximum

friction $\left( { = 1} \right)$

تحلیل ویدئویی تست

منتظریم اولین نفر تحلیلش کنه!