گاما رو نصب کن!

{{ number }}
اعلان ها
اعلان جدیدی وجود ندارد!
کاربر جدید

جستجو

پربازدیدها: #{{ tag.title }}

جستجوهای پرتکرار

میتونی لایو بذاری!

a) By sketching a suitable pair of graphs, show that the equation

$\cot x = 1 + {x^2}$,

where $x$ is in radians, has only one root in the interval $0 \lt x \lt \frac{1}{2}\pi $.

b) Verify by calculation that this root lies between 0.5 and 0.8.

c) Use the iterative formula

${x_{n + 1}} = {\tan ^{ - 1}}\left( {\frac{1}{{1 + x_n^2}}} \right)$

to determine this root correct to 2 decimal places. Give the result of each iteration to 4 decimal places.

پاسخ تشریحی :
نمایش پاسخ

a) Make recognisable sketch of a relevant graph over the given range

Sketch the other relevant graph and justify the given statement

b) Consider the sign of $\cot x - \left( {1 + {x^2}} \right)$ at $x = 0.5$ and $x = 0.8$, or equivalent

Complete the argument with correct calculated values

c) Use the iterative formula correctly at least once with $0.5 \leqslant {x_n} \leqslant 0.8$

Obtain final answer $0.62$

Show sufficient iterations to 4 d.p. to justify its accuracy to 2 d.p., or show there is a sign change in the interval $\left( {0.615,{\text{ }}0.625} \right)$

تحلیل ویدئویی تست

تحلیل ویدئویی برای این تست ثبت نشده است!