a) By sketching a suitable pair of graphs, show that the equation
$\cot x = 1 + {x^2}$,
where $x$ is in radians, has only one root in the interval $0 \lt x \lt \frac{1}{2}\pi $.
b) Verify by calculation that this root lies between 0.5 and 0.8.
c) Use the iterative formula
${x_{n + 1}} = {\tan ^{ - 1}}\left( {\frac{1}{{1 + x_n^2}}} \right)$
to determine this root correct to 2 decimal places. Give the result of each iteration to 4 decimal places.
پاسخ تشریحی :
تحلیل ویدئویی تست
تحلیل ویدئویی برای این تست ثبت نشده است!