گاما رو نصب کن!

{{ number }}
اعلان ها
اعلان جدیدی وجود ندارد!
کاربر جدید

جستجو

پربازدیدها: #{{ tag.title }}

جستجوهای پرتکرار

میتونی لایو بذاری!

A lorry of mass $16000{\text{ }}kg$ climbs a straight hill $ABCD$ which makes an angle $\theta $ with the horizontal, where $\sin \theta  = \frac{1}{{20}}$. For the motion from $A$ to $B$, the work done by the driving force of the lorry is $1200{\text{ }}kJ$ and the resistance to motion is constant and equal to $1240{\text{ }}N$. The speed of the lorry is $15{\text{ }}m{\text{ }}{s^{ - 1}}$ at $A$ and $12{\text{ }}m{\text{ }}{s^{ - 1}}$ at $B$.

a) Find the distance $AB$.

For the motion from $B$ to $D$ the gain in potential energy of the lorry is $2400{\text{ }}kJ$.

b) Find the distance $BD$.

For the motion from $B$ to $D$ the driving force of the lorry is constant and equal to $7200{\text{ }}N$. From $B$ to $C$ the resistance to motion is constant and equal to $1240{\text{ }}N$ and from $C$ to $D$ the resistance to motion is constant and equal to $1860{\text{ }}N$.

c) Given that the speed of the lorry at $D$ is $7{\text{ }}m{\text{ }}{s^{ - 1}}$, find the distance $BC$.

پاسخ تشریحی :
نمایش پاسخ

a) $KE$ loss $ = {\raise0.5ex\hbox{$\scriptstyle 1$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}}16000\left( {{{15}^2} - {{12}^2}} \right)$

$PE$ gain $ = 16000g\left( {AB/20} \right)$

$1200 = 0.8g\left( {AB} \right) + 1.24\left( {AB} \right) - 648$

Distance $AB$ is $200m$

b) Distance $BD$ is $300m$

c) $WD$ against resistance $=$

$1240\left( {BC} \right) + 1860\left( {300 - BC} \right)$

${\raise0.5ex\hbox{$\scriptstyle 1$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}}16000\left( {{{12}^2} - {7^2}} \right) = $

$2400000 + \left( {558000 - 620BC} \right) - 7200 \times 300$

Distance $BC$ is $61.3{\text{ }}m$

تحلیل ویدئویی تست

تحلیل ویدئویی برای این تست ثبت نشده است!