a) Mean $ = 45 - 148/36 = 40.9$ or $1472/36$
EITHER
$Var = 3089/36 - {\left( { - 148/36} \right)^2} = 68.9$
$sd = 8.30$
OR
$\sum {{x^2}} = 3089 - 36 \times {45^2} + 90 \times 1472 = 62669$
$Var = \left( {\frac{{62669}}{{36}} - {{\left( {\frac{{1472}}{{36}}} \right)}^2}} \right)$
$sd = 8.30$
b) New $\sum {\left( {x - 45} \right)} = - 148 - 16 = - 164$
New $\sum {{{\left( {x - 45} \right)}^2}} = 3089 + {16^2} = 3345$
New $sd = \sqrt {3345/37 - {{\left( { - 164/37} \right)}^2}} $
$ = 8.41$
OR
OR $\sum x = 36 \times 45 - 148 = 1472$
New $\sum x = 1472 + 29 = 1501$
$\sum {{x^2}} = 3089 - 36 \times {45^2} + 90 \times 1472 = 62669$
New $\sum {{x^2}} = 62669 + {29^2}\left( { = 63510} \right)$
New $sd = \sqrt {63510/37 - {{\left( {1501/37} \right)}^2}} $
$ = 8.41$