گاما رو نصب کن!

{{ number }}
اعلان ها
اعلان جدیدی وجود ندارد!
کاربر جدید

جستجو

پربازدیدها: #{{ tag.title }}

جستجوهای پرتکرار

میتونی لایو بذاری!

a) The polynomial ${x^4} + \alpha {x^3} - {x^2} + bx + 2$, where $\alpha $ and $b$ are constants, is denoted by $p\left( x \right)$. It is given that $\left( {x - 1} \right)$ and $\left( {x + 2} \right)$ are factors of $p\left( x \right)$. Find the values of $\alpha $ and $b$.

b) When $\alpha $ and $b$ have these values, find the quotient when $p\left( x \right)$ is divided by ${x^2} + x - 2$.

پاسخ تشریحی :
نمایش پاسخ

a) Substitute $x = 1$ or $x =  - 2$ and equate to zero

Obtain a correct equation in any form with powers of $x$ values calculated

Obtain a second correct equation in any form

Solve a relevant pair of equations for $\alpha $ or for $b$

Obtain $\alpha  = 3$ and $b =  - 5$

b) Attempt division by ${x^2} + x - 2$, or equivalent, and reach a partial quotient of ${x^2} + kx$

Obtain partial quotient ${x^2} + 2x$

Obtain ${x^2} + 2x - 1$ with no errors seen

تحلیل ویدئویی تست

تحلیل ویدئویی برای این تست ثبت نشده است!