گاما رو نصب کن!

{{ number }}
اعلان ها
اعلان جدیدی وجود ندارد!
کاربر جدید

جستجو

پربازدیدها: #{{ tag.title }}

جستجوهای پرتکرار

میتونی لایو بذاری!

A smooth hemispherical shell, with centre $O$, weight $12{\text{ N}}$ and radius $0.4{\text{ }}m$, rests on a horizontal plane. A particle of weight $W{\text{ N}}$ lies at rest on the inner surface of the hemisphere vertically below $O$.

A force of magnitude $F{\text{ N}}$ acting vertically upwards is applied to the highest point of the hemisphere, which is in equilibrium with its axis of symmetry inclined at ${20^ \circ }$ to the horizontal (see diagram).

a) Show, by taking moments about $O$, that $F = 16.48$ correct to 4 significant figures.

b) Find the normal contact force exerted by the plane on the hemisphere in terms of $W$. Hence find the least possible value of $W$.

پاسخ تشریحی :
نمایش پاسخ

a) $F \times 0.4\sin {20^ \circ } = 12 \times \left( {0.4/2} \right)\cos {20^ \circ }$

$F = 16.48$

b) $R =  - 16.48 + 12 + W$

$ - 16.48 + 12 + W = 0$

$W = 4.48$

تحلیل ویدئویی تست

منتظریم اولین نفر تحلیلش کنه!