گاما رو نصب کن!

{{ number }}
اعلان ها
اعلان جدیدی وجود ندارد!
کاربر جدید

جستجو

پربازدیدها: #{{ tag.title }}

جستجوهای پرتکرار

میتونی لایو بذاری!

Three friends, Rick, Brenda and Ali, go to a football match but forget to say which entrance to the ground they will meet at. There are four entrances, $A$, $B$, $C$ and $D$. Each friend chooses an entrance independently.

- The probability that Rick chooses entrance $A$ is $\frac{1}{3}$. The probabilities that he chooses entrances $B$, $C$ or $D$ are all equal.

- Brenda is equally likely to choose any of the four entrances.

- The probability that Ali chooses entrance $C$ is $\frac{2}{7}$ and the probability that he chooses entrance $D$ is $\frac{3}{5}$. The probabilities that he chooses the other two entrances are equal.

a) Find the probability that at least 2 friends will choose entrance $B$.

b) Find the probability that the three friends will all choose the same entrance.

پاسخ تشریحی :
نمایش پاسخ

a) $P$(Rick $B$, Brenda $B$, Ali not $B$)

$ + P$(Rick $B$, Brenda not $B$, Ali $B$)

$ + P$(Rick not $B$, Brenda $B$, Ali $B$)

$ = 11/210 + 2/210 + 1/90 = 23/315$

$P$(Rick $B$, Brenda $B$, Ali $B$) $ = 1/315$

Prob(at least 2 at entrance $B$)

$ = 24/315{\text{ }}\left( {8/105} \right){\text{ }}\left( {0.0762} \right)$

b) $P$(entrance $A$) $ = 1/210{\text{ }}\left( {0.00476} \right)$

$P$(entrance $B$) $ = 1/315{\text{ }}\left( {0.00317} \right)$

$P$(entrance $C$) $ = 1/63{\text{ }}\left( {0.0159} \right)$

$P$(entrance $D$) $ = 1/30{\text{ }}\left( {0.0333} \right)$

$P$(same entrance) $ = 2/35{\text{ }}\left( {0.0571} \right)$

تحلیل ویدئویی تست

تحلیل ویدئویی برای این تست ثبت نشده است!