گاما رو نصب کن!

{{ number }}
اعلان ها
اعلان جدیدی وجود ندارد!
کاربر جدید

جستجو

پربازدیدها: #{{ tag.title }}

جستجوهای پرتکرار

میتونی لایو بذاری!

The management of a factory thinks that the mean time required to complete a particular task is 22 minutes. The times, in minutes, taken by employees to complete this task have a normal distribution with mean $\mu $ and standard deviation 3.5. An employee claims that 22 minutes is not long enough for the task. In order to investigate this claim, the times for a random sample of 12 employees are used to test the null hypothesis $\mu  = 22$ against the alternative hypothesis $\mu  \gt 22$ at the 5% significance level.

a) Show that the null hypothesis is rejected in favour of the alternative hypothesis if $\overline x  \gt 23.7$ (correct to 3 significant figures), where $\overline x $ is the sample mean.

b) Find the probability of a Type II error given that the actual mean time is 25.8 minutes.

پاسخ تشریحی :
نمایش پاسخ

a) $ \pm 1.645$ used

$\frac{{\overline x  - 22}}{{\frac{{3.5}}{{\sqrt {12} }}}} \gt 1.645$

$\overline x  \gt 23.66\left( {20} \right)$

$\overline x  \gt 23.7$

b) $P\left( {\overline x  < 23 xss=removed>

$\frac{{23.662 - 25.8}}{{\frac{{3.5}}{{\sqrt {12} }}}} =  - 2.116$

$\Phi \left( {' - 2.116'} \right) = 1 - \Phi \left( {'2.116'} \right)$

$\left( { = 1 - 0.9828} \right)$

$ = 0.0172$ ($3$ sfs)

تحلیل ویدئویی تست

تحلیل ویدئویی برای این تست ثبت نشده است!