گاما رو نصب کن!

{{ number }}
اعلان ها
اعلان جدیدی وجود ندارد!
کاربر جدید

جستجو

پربازدیدها: #{{ tag.title }}

جستجوهای پرتکرار

میتونی لایو بذاری!

a)(i) Find the probability of getting at least one 3 when 9 fair dice are thrown.

(ii) When $n$ fair dice are thrown, the probability of getting at least one 3 is greater than 0.9.

Find the smallest possible value of $n$.

b) A bag contains 5 green balls and 3 yellow balls. Ronnie and Julie play a game in which they take turns to draw a ball from the bag at random without replacement. The winner of the game is the first person to draw a yellow ball. Julie draws the first ball. Find the probability that Ronnie wins the game.

پاسخ تشریحی :
نمایش پاسخ

a)(i) $P$(at least one $3$) $ = 1 - P$(no $3\,s$)

$ = 1 - {\left( {5/6} \right)^9}$

$ = 0.806$

(ii) $P$(at least $1$ three) $ = 1 - {\left( {5/6} \right)^n}$

$1 - {\left( {5/6} \right)^n} \gt 0.9$

$n \gt 12.6$

$n = 13$

b) $P$($R$ wins his ${1^{st}}$ ball) $ = P\left( {GY} \right)$

$ = 15/56{\text{ }}\left( {0.268} \right)$

$P$($R$ wins ${2^{nd}}$ ball) $ = P\left( {GGGY} \right) = 3/28$

$P$($R$ wins $3rd$ ball) $ = P\left( {GGGGGY} \right)$

$\frac{5}{8} \times \frac{4}{7} \times \frac{3}{6} \times \frac{2}{5} \times \frac{1}{4} \times \frac{3}{3} = 1/56$

$P$($R$ wins) $ = 11/28{\text{ }}\left( {0.393} \right)$

تحلیل ویدئویی تست

تحلیل ویدئویی برای این تست ثبت نشده است!