گاما رو نصب کن!

{{ number }}
اعلان ها
اعلان جدیدی وجود ندارد!
کاربر جدید

جستجو

پربازدیدها: #{{ tag.title }}

جستجوهای پرتکرار

میتونی لایو بذاری!

Particles $P$ and $Q$ move on a line of greatest slope of a smooth inclined plane. $P$ is released from rest at a point $O$ on the line and $2{\text{ }}s$ later passes through the point $A$ with speed $3.5{\text{ }}m{\text{ }}{s^{ - 1}}$.

a) Find the acceleration of $P$ and the angle of inclination of the plane.

At the instant that $P$ passes through $A$ the particle $Q$ is released from rest at $O$. At time $t\,s$ after $Q$ is released from $O$, the particles $P$ and $Q$ are $4.9{\text{ }}m$ apart.

b) Find the value of $t$.

پاسخ تشریحی :
نمایش پاسخ

a) $\left[ {2a = 3.5} \right]$

Acceleration is $1.75{\text{ }}m{s^{ - 2}}$

$\left[ {1.75 = g\sin \alpha } \right]$ or

$[0.5 \times {3.5^2} = gh;{\text{ }}s = 0.5 \times 3.5 \times 2$ and

$\sin \alpha  = h/s]$

Angle is ${10.1^ \circ }$ or ${0.176^ \circ }$

b) $\left[ {{s_P} = {\raise0.5ex\hbox{$\scriptstyle 1$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}}a{2^2} + \{ \left( {a2} \right)t + {\raise0.5ex\hbox{$\scriptstyle 1$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}}a{t^2}\} } \right]$

or $\left[ {{s_P} = {\raise0.5ex\hbox{$\scriptstyle 1$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}}a{{\left( {t + 2} \right)}^2}} \right]$

$\left[ {{s_P} - {s_Q} = {\raise0.5ex\hbox{$\scriptstyle 1$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}}a{2^2} + \left( {a2} \right)t + {\raise0.5ex\hbox{$\scriptstyle 1$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}}a{t^2} - {\raise0.5ex\hbox{$\scriptstyle 1$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}}a{t^2}} \right]$

$2 \times 1.75 + 2 \times 1.75t$

$\left[ {4.9 = 2a + 2at} \right]$

$t = 0.4$

تحلیل ویدئویی تست

تحلیل ویدئویی برای این تست ثبت نشده است!